您好!歡迎訪問(wèn)徠卡顯微系統(tǒng)(上海)貿(mào)易有限公司網(wǎng)站!
全國(guó)服務(wù)咨詢熱線:

17806260618

當(dāng)前位置:首頁(yè) > 技術(shù)文章 > 顯微課堂 | UMAP、t-SNE與PacMAP降維大對(duì)決

顯微課堂 | UMAP、t-SNE與PacMAP降維大對(duì)決

更新時(shí)間:2024-09-19      點(diǎn)擊次數(shù):306

從高維到低維:

Aivia帶你輕松駕馭3種數(shù)據(jù)降維技術(shù)

數(shù)據(jù)降維大揭秘:


UMAP、t-SNE與PacMAP的zhongji對(duì)決


1.png

c642415bfd2b1ca3af90aa61811d2f72.png

降維將數(shù)據(jù)從高維空間轉(zhuǎn)換到低維空間,以簡(jiǎn)化數(shù)據(jù)解釋。

在Aivia中的應(yīng)用:通過(guò)選擇不同的測(cè)量方法,幫助用戶為不同類別實(shí)現(xiàn)清晰的決策邊界,這些測(cè)量方法可以用于不同的聚類技術(shù)。



Aivia中的三種降維方法:



  • UMAP – 比t-SNE更快


  • PacMAP – 比UMAP更快,并且更好地保留高維數(shù)據(jù)的局部和全局結(jié)構(gòu)

  • t-SNE – 保留局部結(jié)構(gòu)



關(guān)于參數(shù)和不同使用示例的詳細(xì)技術(shù)說(shuō)明,請(qǐng)參見(jiàn)Aivia Wiki。



UMAP



UMAP(統(tǒng)yiliu形近似與投影)是一種現(xiàn)代降維技術(shù),主要用于高維數(shù)據(jù)集的可視化。它的用途與t-SNE相似,但通常速度更快且能夠處理更大的數(shù)據(jù)集。UMAP基于保持?jǐn)?shù)據(jù)的拓?fù)浣Y(jié)構(gòu)的原則,通過(guò)利用黎曼幾何和代數(shù)拓?fù)鋪?lái)近似數(shù)據(jù)的底層流形。通過(guò)捕捉局部和全局結(jié)構(gòu),它提供了數(shù)據(jù)簇和關(guān)系的全面視圖。


UMAP的兩個(gè)主要步驟

2.png


步驟1


創(chuàng)建一個(gè)高維圖。這是一個(gè)加權(quán)圖,其中一個(gè)點(diǎn)與其最近的鄰居相連。


圖片

84d8a474257112206a0bd251b789b2c7.png

610036c364fa4823a2f7bec4927eb1d9.png

79811fc4c1a8e494db9f9ee0c8fb90fc.png

步驟2


創(chuàng)建一個(gè)盡可能類似于高維圖的低維或二維圖,生成UMAP 1和UMAP 2參數(shù)。



1

深入了解UMAP理論


UMAP的核心工作原理與t-SNE非常相似——兩者都使用圖布局算法在低維空間中排列數(shù)據(jù)。UMAP構(gòu)建數(shù)據(jù)的高維圖表示,然后優(yōu)化一個(gè)低維圖,使其在結(jié)構(gòu)上盡可能相似。UMAP通過(guò)基于每個(gè)點(diǎn)的第n個(gè)最近鄰的距離來(lái)局部選擇半徑,從而確保局部結(jié)構(gòu)與全局結(jié)構(gòu)的平衡。



2

如何(誤)解讀UMAP


雖然UMAP相較于t-SNE有許多優(yōu)勢(shì),但它絕不是萬(wàn)能的——解讀和理解其結(jié)果需要一定的謹(jǐn)慎。需要注意以下幾點(diǎn):


  • 超參數(shù)非常重要:選擇合適的值取決于數(shù)據(jù)和你的目標(biāo)。

  •  UMAP圖中的簇大小毫無(wú)意義:簇之間的相對(duì)大小基本上沒(méi)有意義。

  • 簇之間的距離可能毫無(wú)意義:盡管UMAP在全局位置上更好地保留了簇的位置,但它們之間的距離并不具有意義。

  • 隨機(jī)噪聲不總是看起來(lái)隨機(jī):特別是在n_neighbors值較低時(shí),可能會(huì)觀察到虛假的聚類。

  • 你可能需要不止一張圖:由于UMAP算法是隨機(jī)的,不同的運(yùn)行可能產(chǎn)生不同的結(jié)果。




優(yōu)點(diǎn)

  • 保留局部和全局結(jié)構(gòu):UMAP捕捉數(shù)據(jù)中的非線性關(guān)系,適用于處理復(fù)雜數(shù)據(jù)集。


  • 速度和可擴(kuò)展性:UMAP在計(jì)算上更高效,適合處理大數(shù)據(jù)集。

  • 參數(shù)調(diào)優(yōu):UMAP提供了參數(shù)調(diào)優(yōu)的靈活性,允許用戶在保留局部和全局結(jié)構(gòu)之間進(jìn)權(quán)衡。



缺點(diǎn)

  • 可解釋性:UMAP嵌入可能不如一些其他方法(如PCA)那樣具有可解釋性。


  • 對(duì)超參數(shù)的敏感性:UMAP的性能可能對(duì)超參數(shù)選擇敏感,找到合適的參數(shù)可能需要進(jìn)行實(shí)驗(yàn)。

  • 在高維空間中的局限性:UMAP在非常高維的空間中可能表現(xiàn)不佳。

  • 計(jì)算資源需求:對(duì)于極其龐大的數(shù)據(jù)集,UMAP仍然可能需要大量的計(jì)算資源。



圖片

圖2:對(duì)Fashion MNIST數(shù)據(jù)集應(yīng)用降維。10類服裝物品的28x28圖像被編碼為784維向量,然后通過(guò)UMATt-SNE投影到3維。



t-SNE(t-隨機(jī)鄰域嵌入)


t-SNE(t-隨機(jī)鄰域嵌入)是一種流行的降維方法,用于高維數(shù)據(jù)的可視化。t-SNE通過(guò)保留數(shù)據(jù)的局部結(jié)構(gòu)來(lái)工作,通常會(huì)導(dǎo)致簇的清晰分離。與專注于zuida化方差的PCA(主成分分析)不同,t-SNE強(qiáng)調(diào)在降維空間中保持相似的距離接近,不相似的距離遠(yuǎn)離。然而,由于其對(duì)局部結(jié)構(gòu)的強(qiáng)調(diào),它有時(shí)會(huì)夸大簇,并不總是能保留數(shù)據(jù)的全局結(jié)構(gòu)。此方法計(jì)算量大,尤其是對(duì)于大型數(shù)據(jù)集。


優(yōu)點(diǎn)


1

局部結(jié)構(gòu)的保留


t-SNE在保留數(shù)據(jù)的局部結(jié)構(gòu)方面表現(xiàn)出色,使其在識(shí)別相似數(shù)據(jù)點(diǎn)的聚類時(shí)非常有效。


2

靈活性

與某些線性方法(如PCA)不同,它可以有效處理非線性數(shù)據(jù)結(jié)構(gòu)。

3

可視化

特別適用于將高維數(shù)據(jù)可視化為二維或三維。



缺點(diǎn)


1

計(jì)算強(qiáng)度


該算法在處理大型數(shù)據(jù)集時(shí)可能會(huì)非常耗費(fèi)計(jì)算資源。


2

隨機(jī)性

由于算法的隨機(jī)性,最終的可視化結(jié)果在不同運(yùn)行之間可能會(huì)有所不同,這可能導(dǎo)致不一致性。

3

超參數(shù)敏感性

結(jié)果可能對(duì)困惑度(perplexity)的選擇非常敏感。

4

可解釋性

t-SNE圖中聚類之間的距離并不總是具有有意義的解釋。該算法優(yōu)先保留局部結(jié)構(gòu)而非全局結(jié)構(gòu)。t-SNE可視化中的數(shù)據(jù)點(diǎn)密度不一定代表原始高維空間中的密度。

5

僅適用于可視性

雖然在可視化方面表現(xiàn)出色,但t-SNE嵌入可能并不總是適合作為其他機(jī)器學(xué)習(xí)算法的輸入。



PaCMAP(成對(duì)控制流形近似)


PaCMAP(成對(duì)控制流形近似)是一種降維技術(shù),作為t-SNE和UMAP等方法的替代方案被引入。該方法旨在平衡數(shù)據(jù)中局部和全局結(jié)構(gòu)的保留,解決其他技術(shù)中觀察到的一些挑戰(zhàn)。它引入了成對(duì)吸引和排斥項(xiàng),以在流形學(xué)習(xí)過(guò)程中控制平衡,并以其速度和處理大數(shù)據(jù)集的能力而著稱,同時(shí)能夠生成可解釋的嵌入。


優(yōu)點(diǎn)



1

混合方法


PacMAP結(jié)合了局部和全局結(jié)構(gòu)保留的優(yōu)點(diǎn),旨在從t-SNE(局部)和PCA(全局)等方法中捕捉兩者的最佳特性。PacMAP旨在結(jié)合t-SNE(局部結(jié)構(gòu)保留)和UMAP/PCA(全局結(jié)構(gòu)保留)的優(yōu)勢(shì)。


2

局部和全局結(jié)構(gòu)保留的靈活性

該方法可以根據(jù)數(shù)據(jù)的性質(zhì)和用戶的目標(biāo),調(diào)整以強(qiáng)調(diào)局部或全局結(jié)構(gòu)。

3

減少擁擠問(wèn)題

該方法旨在緩解t-SNE中常見(jiàn)的“擁擠問(wèn)題",這種問(wèn)題會(huì)導(dǎo)致簇被推得過(guò)遠(yuǎn)。

4

減少隨機(jī)性

與t-SNE的隨機(jī)性相比,PacMAP在多次運(yùn)行中提供了更一致的結(jié)果。雖然有參數(shù)需要調(diào)整,但該方法設(shè)計(jì)得比t-SNE對(duì)參數(shù)變化更具魯棒性。



缺點(diǎn)


1

復(fù)雜性和熟悉度


作為一種混合方法,PacMAP可能對(duì)熟悉簡(jiǎn)單、單一目標(biāo)方法的用戶來(lái)說(shuō)更難理解。一些數(shù)據(jù)分析社區(qū)可能對(duì)PacMAP不太熟悉,導(dǎo)致在采用或解釋時(shí)可能面臨挑戰(zhàn)。由于其較新,可能沒(méi)有像t-SNE或PCA等長(zhǎng)期存在的方法在各種應(yīng)用中經(jīng)過(guò)廣泛驗(yàn)證。


2

參數(shù)敏感性

盡管設(shè)計(jì)得對(duì)參數(shù)變化更具魯棒性,但結(jié)果仍可能因參數(shù)選擇而異。根據(jù)數(shù)據(jù)的不同,如果調(diào)整不當(dāng),可能會(huì)有過(guò)度強(qiáng)調(diào)局部或全局結(jié)構(gòu)的風(fēng)險(xiǎn)。

3

可解釋性

與其他降維技術(shù)一樣,解釋降維后的維度仍然可能是不直觀的。



Aivia賦能數(shù)據(jù)驅(qū)動(dòng)的空間洞察

降維工具大解析

微信圖片_20240919110833.jpg

參考文獻(xiàn):


1. Becht E, McInnes L, Healy J, Dutertre CA, Kwok IW, Ng LG, Ginhoux F, Newell EW. Dimensionality reduction for visualizing single-cell data using UMAP. Nature biotechnology. 2019 Jan;37(1):38-44.

2. Wang Y, Huang H, Rudin C, Shaposhnik Y. Understanding how dimension reduction tools work: an empirical approach to deciphering t-SNE, UMAP, TriMAP, and PaCMAP for data visualization. The Journal of Machine Learning Research. 2021 Jan 1;22(1):9129-201.

3. Van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of machine learning research. 2008 Nov 1;9(11).

4. McInnes L, Healy J, Melville J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426. 2018 Feb 9.



徠卡顯微系統(tǒng)(上海)貿(mào)易有限公司
地址:上海市長(zhǎng)寧區(qū)福泉北路518號(hào)2座5樓
郵箱:lmscn.customers@leica-microsystems.com
傳真:
關(guān)注我們
歡迎您關(guān)注我們的微信公眾號(hào)了解更多信息:
歡迎您關(guān)注我們的微信公眾號(hào)
了解更多信息